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Preface

This book originated as a collection of lecture notes from the VKI lecture series
Machine Learning for Fluid Dynamics, jointly organized by the von Karman
Institute (VKI) and the Université Libre de Bruxelles (ULB) and held in Brussels
from January 29 to February 2, 2024. The course program, the recording of some
of the lectures, and additional information on all course editions are available
on the course webpage https://www.datadrivenfluidmechanics.com/.

Book Overview

The book is organized around four main topics: (1) modeling (Chapters 2 to 5),
(2) control (Chapters 6 and 7), (3) dimensionality reduction (Chapters 8 and
9), and (4) applications in aerodynamics and reactive flows (Chapters 10 and
11). These core sections are framed by an introductory chapter on the machine
learning workflow (Chapter 1) and a concluding chapter discussing the future of
Digital Twinning technology (Chapter 12).

Chapter 1 with a high-level overview of machine learning for scientific
discovery by Steve Brunton. This chapter reviews the process of formulating a
machine-learning problem for scientific purposes in its five key stages: problem
formulation, data collection, model architecture, loss function design, and
optimization algorithm selection. It emphasizes the role of physics-informed
machine learning in enhancing model accuracy and offers an example of sparse
identification of nonlinear dynamics (SINDy).

The session on modeling opens in Chapter 2, by Miguel A. Mendez,
which delves into the fundamentals of regression, covering parametric and
non-parametric regression methods, the notion of maximum likelihood esti-
mation, bootstrapping and cross-validation, and the definition of various cost
functions. It closes with the applications of these tools for data-driven scien-
tific computing. This chapter is complemented by Chapter 3, which bridges
theory with hands-on applications in data-driven fluid mechanics. This chap-
ter, by Miguel A. Mendez and co-workers, provides three Python tutorials in
physics-constrained regression. Three exercises are considered, from "gap filling"
and super-resolution to turbulence modeling and real-time data assimilation.
Chapter 4, by Paola Cinnella, explores data-driven approaches for identifying
turbulent stress closures using high-fidelity simulation and experimental data,
focusing on Reynolds-Averaged Navier-Stokes (RANS) modeling. Bayesian meth-
ods and non-parametric approaches are introduced to handle uncertainty and
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enhance model adaptability, illustrated through several case studies highlighting
key research trends in the field. Chapter 5, by Luca Magri and co-workers,
dives into the prediction with chaotic dynamical systems. Starting from an
introduction to key concepts such as Lyapunov exponents to measure sensitivity
to initial conditions, this chapter introduces machine learning methods such
as Recurrent Neural Networks (RNN) and Echo State Networks (ESNs) and
their applications to forecast short-term behaviors for seemingly unpredictable
systems.

Within the session on flow control, Chapter 6, by Onofrio Semeraro,
provides an introduction to Reinforcement Learning (RL) and its potential for
flow control. This chapter links fundamental notions of RL —such as the Bellman
equation, rewards, and policies— to more traditional optimal control settings and
its standard tools — such as the Riccati equation and Linear Quadratic Regulators.
It also provides a broad literature review and perspective on its applications in
fluid mechanics. Chapter 7, by Stefano Discetti and co-workers, complements
the tour in control application with an introduction to Model Predictive Control
(MPC) for linear and nonlinear systems. This chapter features a case study
on wake control to illustrate how MPC can stabilize fluid flows by predicting
and adjusting control actions in real time, making it valuable for applications
requiring high responsiveness.

Within the session on dimensionality reduction, Chapter 8, by Miguel A.
Mendez and co-workers, reviews the fundamentals of dimensionality reduction,
starting from the classic Principal Component Analysis (PCA) and moving
towards classic data-driven decompositions and more complex autoencoders and
manifold learning methods. Chapter 9, by Soledad Le Clainche and co-workers
complements the session on dimensionality reduction with an overview of hybrid
linear and nonlinear methods, combining traditional modal analysis with deep
learning architecture to enhance pattern identification performances.

In the session on applications, Chapter 9, by Philippe Bekemeyer and
co-workers, gives a broad overview of machine learning methods for aerodynamic
design optimization, focusing on surrogate models for computational efficiency,
uncertainty quantification, and robust design. The presentation is enriched by an
example case study on airfoil design to illustrate how machine learning can create
faster and more efficient optimization workflows. Chapter 10, by Alessandro
Parente and co-workers, presents recent advances in dimensionality reduction
and classification for reactive flows, such as those encountered in combustion and
chemical reactions. Several topics linked to the aim of reducing computational
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costs are discussed: from feature extraction to transport of principal components
and chemistry acceleration techniques.

Finally, the book closes with Chapter 12 by Omer San, exploring the
notion of digital twins, their potential, challenges, and enabling technologies.
The chapter introduces the main scopes of digital twinning, including predictive
maintenance, operational efficiency, and performance optimization, and discusses
how these could be applied in complex fluid systems like engines, wind turbines,
and HVAC systems.

Miguel A. Mendez
von Karman Institute for Fluid Dynamics

Alessandro Parente
Université libre de Bruxelles
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Machine Learning
for Scientific Discovery

STEVE BRUNTON,*

UNIVERSITY OF WASHINGTON, SEATTLE WA, USA

These notes provide a brief overview of how machine learning is being used
to advance scientific discovery. Specifically, we focus on how to use machine
learning to build data-driven models in fluid mechanics. The process of machine
learning is broken down into five stages: (1) formulating a problem to model,
(2) collecting and curating training data to inform the model, (3) choosing an
architecture with which to represent the model, (4) designing a loss function
to assess the performance of the model, and (5) selecting and implementing an
optimization algorithm to train the model. At each stage, we discuss how prior
physical knowledge may be embedded into the process, with specific examples
from the field of fluid mechanics. Finally, we give an example of the sparse
identification of nonlinear dynamics (SINDy) approach to model discovery.

1.1 Introduction

The field of fluid mechanics is rich with data and rife with problems, which makes
it a perfect playground for machine learning. Machine learning is the art of
building models from data using optimization and regression algorithms. Many
of the challenges in fluid mechanics may be posed as optimization problems, such
as designing a wing to maximize lift while minimizing drag at cruise velocities,
estimating a flow field from limited measurements, controlling turbulence for
mixing enhancement in a chemical plant, or reducing drag behind a vehicle,
among myriad others. These optimization tasks fit well with machine learn-
ing algorithms, which are designed to handle nonlinear and high-dimensional
problems. In fact, machine learning and fluid mechanics both tend to rely on

*

sbrunton@uw.edu.
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the same assumption that there are patterns that can be exploited, even in
high-dimensional systems (Taira et al., 2017). Often, the machine learning
algorithm will model some aspect of the fluid, such as the lift profile given a
particular airfoil geometry, providing a surrogate that may be optimized over.
Machine learning may also be used to directly solve the fluid optimization task,
such as designing a machine learning model to manipulate the behavior of the
fluid for some engineering objective with active control (Rabault et al., 2019;
Ren et al., 2020; Zhou et al., 2020).

In either case, it is important to realize that machine learning is not an
automatic or turn-key procedure for extracting models from data. Instead, it
requires expert human guidance at every stage of the process, from deciding
on the problem to collecting and curating data that might inform the model,
to selecting the machine learning architecture best capable of representing or
modeling the data, to designing custom loss functions to quantify performance
and guide the optimization, to implementing specific optimization algorithms to
train the machine learning model to minimize the loss function over the data. A
better name for machine learning might be “expert humans teaching machines
how to learn a model to fit some data," although this is not as catchy. Particularly
skilled (or lucky!) experts may design a learner or a learning framework capable of
learning a variety of tasks, generalizing beyond the training data, and mimicking
other aspects of intelligence. However, such artificial intelligence is rare, even
more so than human intelligence. The majority of machine learning models
are just that, models, which should fit directly into the decades old practice of
model-based design, optimization, and control (Brunton et al., 2020).

With its unprecedented success on many challenging problems in computer
vision and natural language processing, machine learning is rapidly entering the
physical sciences, and fluid mechanics is no exception. The simultaneous promise
and overpromise of machine learning are causing many researchers to have a
healthy mixture of optimism and skepticism. In both cases, there is a strong
desire to understand machine learning’s uses and limitations and best practices
for incorporating it into existing research and development workflows. It is also
important to realize that while it is now relatively simple to train a machine
learning model for a well-defined task, creating a new model that outperforms
traditional numerical algorithms and physics-based models is still difficult. In-
corporating partially known physics into the machine learning pipeline improves
model generalisation and interpretability, which are key elements of modern
machine learning (Du et al., 2019; Molnar, 2020).
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1. Problem (e.g. model reduction)

( 1\ r )
2. Data X 3. Architecture f(X,0) =f;°f,f

X
V4

4. Loss Z(0,X)

5. Optimize 6* = argmin,Z(0,X)

Figure 1.1: Schematic of the five stages of machine learning on an example of
reduced-order modeling. In this case, the goal is to learn a low dimensional
coordinate system z = fi(x, 6;) from data in a high-dimensional representation
x, along with a dynamical system model z = f3(z, 02) for how the state z evolves
in time. Finally, this latent state derivative z must be able to approximate
the high dimensional derivative x through the decoder x ~ f3(z, 03). The loss
function £(0,X) defines how well the model performs, averaged over the data
X. Finally, the parameters 6 = {61, 62,03} are found through optimization.

1.2 Physics Informed Machine Learning for Fluid Mechanics

Applied machine learning may be separated into a few canonical steps, each
of which provides an opportunity to embed prior physical knowledge: (1)
choosing the problem to model or the question to answer; (2) choosing and
curating the data used to train the model; (3) deciding on a machine learning
architecture to best represent or model this data; (4) designing loss functions to
quantify performance and to guide the learning process; and (5) implementing
an optimization algorithm to train the model to minimize the loss function over
the training data. See Fig. 1.1 for a schematic of this process on the example of
reduced-order modeling. This organization of steps is only approximate, and
there are considerable overlaps and tight interconnections between each stage.
For example, choosing the problem to model and choosing the data to inform
this model are two closely related decisions. Similarly, designing a custom loss
function and implementing an optimization algorithm to minimize this loss
function are tightly coupled. In most modern machine learning workflows, it is
common to iteratively revisit earlier stages based on the outcome at later stages
so that the machine learning researcher is constantly asking new questions and
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revising the data, the architecture, the loss functions, and the optimization
algorithm to improve performance. Here, we discuss these canonical stages of
machine learning, investigate how to incorporate physics, and review examples
in the field of fluid mechanics. This discussion is largely meant to be a high-level
overview, and many more details can be found in recent reviews (Duraisamy
et al., 2019; Brenner et al., 2019; Brunton et al., 2020; Brenner & Koumoutsakos,
2021).

1.2.1 The problem

Data science is the art of asking and answering questions with data. The
sub-field of machine learning is concerned with leveraging historical data to
build models that may be deployed to automatically answer these questions,
ideally in real-time, given new data. It is critical to select the right system to
model, motivated by a problem that is both important and tractable. Choosing
a problem involves deciding on input data that will be readily available in the
future and output data that will represent the desired output, or prediction,
of the model. The output data should be determinable from the inputs, and
the functional relationship between these is precisely what the machine learning
model will be trained to capture.

The nature of the problem, specifically what outputs will be modeled given
what inputs, determines the large classes of machine learning algorithms: su-
pervised, unsupervised, and reinforcement learning. In supervised learning, the
training data will have expert labels that should be predicted or modeled with
the machine learning algorithm. These output labels may be discrete, such as a
categorical label of a ‘dog’ or a ‘cat’ given an input image, in which case the
task is one of classification. If the labels are continuous, such as the average
value of lift or drag given a specified airfoil geometry, then the task is one of
regression. In unsupervised learning, there are no expert labels, and structure
must be extracted from the input data alone; thus, this is often referred to as
data mining, and constitutes a particularly challenging field of machine learning.
Again, if the structure in the data is assumed to be discrete, then the task is
clustering. After the clusters are identified and characterized, these groupings
may be used as proxy labels to then classify new data. If the structure in the
data is assumed to be continuously varying, then the task is typically thought
of as an embedding or dimensionality reduction task. Principal component
analysis (PCA) or proper orthogonal decomposition (POD) may be thought of

16



Machine Learning for Scientific Discovery

as unsupervised learning tasks that seek a continuous embedding of reduced
dimension (Brunton & Kutz, 2019). Reinforcement learning is a third, large
branch of machine learning research, in which an agent learns to make control
decisions to interact with an environment for some high-level objective (Sutton
& Barto, 1998). Examples include learning how to play games (Mnih et al.,
2015; Silver et al., 2017), such as chess and go.

Embedding physics: Deciding on what phenomena to model with machine
learning is often inherently related to the underlying physics. Although classical
machine learning has been largely applied to “static" tasks, such as image
classification and the placement of advertisements, increasingly it is possible to
apply these techniques to model physical systems that evolve in time according
to some rules or physics. For example, we may formulate a learning problem
to find and represent a conserved quantity, such as a Hamiltonian, purely from
data (Kaiser et al., 2018a). Alternatively, the machine learning task may be to
model time-series data as a differential equation, with the learning algorithm
representing the dynamical system (Schmidt & Lipson, 2009; Schmid, 2010;
Brunton et al., 2016b; Pathak et al., 2017; Vlachas et al., 2018). Similarly, the
task may involve learning a coordinate transformation where these dynamics
become simplified in some physical way; i.e., coordinate transformations to
linearize or diagonalize/decouple dynamics (Lusch et al., 2018; Wehmeyer &
Noé, 2018; Mardt et al., 2018; Takeishi et al., 2017; Li et al., 2017; Yeung et al.,
2017; Otto & Rowley, 2019; Champion et al., 2019).

Examples in fluid mechanics: There are many physical modeling tasks in
fluid mechanics that are benefiting from machine learning (Brenner et al., 2019;
Brunton et al., 2020). A large field of study focuses on formulating turbulence
closure modeling as a machine learning problem (Duraisamy et al., 2019; Ahmed
et al., 2021a), such as learning models for the Reynolds stresses (Ling et al.,
2016b; Kutz, 2017) or sub-gridscale turbulence (Maulik et al., 2019b; Novati
et al., 2021). Designing useful input features is also an important way that prior
physical knowledge is incorporated into turbulence closure modeling (Wang
et al., 2017; Zhu et al., 2019a, 2021). Similarly, machine learning has recently
been focused on the problem of improving computational fluid dynamics (CFD)
solvers (Bar-Sinai et al., 2019; Thaler et al., 2019; Stevens & Colonius, 2020;
Kochkov et al., 2021). Other important problems in fluid mechanics that benefit
from machine learning include super-resolution (Erichson et al., 2020; Fukami
et al., 2019), robust modal decompositions (Taira et al., 2017, 2020; Scherl
et al., 2020), network and cluster modeling (Nair & Taira, 2015; Kaiser et al.,
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2014; Fernex et al., 2021), control (Maceda et al., 2021; Zhou et al., 2020) and
reinforcement learning (Fan et al., 2020; Verma et al., 2018), and design of
experiments in cyberphysical systems (Fan et al., 2019). Aerodynamics is a
large related field with significant data-driven advances (Kou & Zhang, 2021).
The very nature of these problems embeds the learning process into a larger
physics-based framework so that the models are more physically relevant by
construction.

1.2.2 The data

Data is the lifeblood of machine learning, and our ability to build effective
models relies on what data is available or may be collected. As discussed earlier,
choosing data to inform a model is closely related to choosing what to model in
the first place, and therefore this stage cannot be strictly separated from the
choice of a problem above. The quality and quantity of data directly affect the
resulting machine learning model. Many machine learning architectures, such as
deep neural networks, are essentially sophisticated interpolation engines, and so
having a diversity of training data is essential to these models being useful on
unseen data. For example, modern deep convolutional neural networks rose to
prominence with their unprecedented classification accuracy (Krizhevsky et al.,
2012) on the ImageNet data base (Deng et al., 2009), which contains over 14
million labeled images with over 20,000 categories, providing a sufficiently large
and rich set of examples for training. This pairing of a vast labeled data set
with a novel deep learning architecture is widely regarded as the beginning of
the modern era of deep learning (Goodfellow et al., 2016).

Embedding physics: The training data provides several opportunities to
embed prior physical knowledge. If a system is known to exhibit symmetry,
such as translational or rotational invariance, then it is possible to augment
and enrich the training data with shifted or rotated examples. More generally,
it is often assumed that with an abundance of training data, these physical
invariances will automatically be learned by a sufficiently expressive architecture.
However, this approach tends to require considerable resources, both to collect
and curate the data, as well as to train increasingly large models, making it
more appropriate for industrial scale, rather than academic scale research. In
contrast, it is also possible to use physical intuition to craft new features from the
training data, for example, by applying a coordinate transformation that may
simplify the representation or training. Physical data often comes from multiple
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This chapter opens with a review of classic tools for regression, a subset of
machine learning that seeks to find relationships between variables. With the
advent of scientific machine learning® this field has moved from a purely data-
driven (statistical) formalism to a constrained or “physics-informed” formalism,
which integrates physical knowledge and methods from traditional computational
engineering. In the first part, we introduce the general concepts and the
statistical flavor of regression versus other forms of curve fitting. We then
move to an overview of traditional methods from machine learning and their
classification and ways to link these to traditional computational science. Finally,
we close with a note on methods to combine machine learning and numerical
methods for physics

2.1 A note on notation and style

Vectors, Matrices and lists. We use lowercase letters for scalar quantities,
i.,e. a € R. Bold lowercase letters are used for vectors, i.e., @ € R™. The
i-th entry of a vector is denoted with a subscript as @; or with Python-like
notation as x[i]. We use square brackets to create vectors from a set of scalars,
e.g a = [ag,a,...an,—1] € R™. Unless otherwise stated, a vector is a column

*

t
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The term “scientific machine learning” refers to the integration of machine learning with
models, principles, and data arising from the natural sciences and engineering. It does
not imply that other forms of machine learning are non-scientific. Instead, it highlights a
focus on problems where physical laws (e.g., conservation laws, PDEs, thermodynamics)
play a central role. Scientific machine learning typically involves combining data-driven
methods with domain knowledge, physics-based modeling, numerical simulation, and
uncertainty quantification. The emphasis is on developing algorithms that are constrained
by—or informed by—scientific theory, enabling improved prediction, interpretability, and
generalization in complex physical systems.
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“equally” by the training optimizer. Even when an appropriate balance is
reached, the optimal solution usually seeks a compromise that does not
ensure the fulfillment of the condition to machine precision. This can be
problematic for problems extremely sensitive to, e.g., boundary conditions.
A remedy is the use of methods for re-scaling™ the gradient of the cost
function during the training (Wang et al., 2021).

In summary, penalties are usually of great help and always worth consider-
ing, given how simple it is to set them up. However, one should not solely
rely on these to fully enforce the physics-driven information unless fairly
sophisticated methods are used.

3. Lagrange Multipliers and Hard Constraints. If the previous ap-
proach can be viewed as adding soft constraints, this framework enforces
hard constraints. The training problem is formulated as a constrained
optimization, where the data-driven cost function ¢ is minimized subject
to the physics-driven constraint Rg = 0. The literature on constrained
optimization is extensive (see Nocedal & Wright (2006) and Martins &
Ning (2021) for overviews), and many algorithmic strategies are available.

The general idea is to introduce the augmented function A = § + AT Ry,
where A € R"/ is the vector of Lagrange multipliers and n ¢ is the number of
constraints. Unlike the soft-constraint approach, this formulation requires
solving for both f and A, making the problem numerically more involved.

For linear methods such as Radial Basis Functions (RBFs), this constrained
formulation recovers well-known structures when addressing classical PDEs.
When enforcing PDE constraints together with standard boundary con-
ditions (e.g., Dirichlet or Neumann), the resulting system often reduces
to a quadratic objective with linear constraints, leading to a large linear
system (Sperotto et al., 2022). More broadly, the use of RBF expansions to
solve PDEs without a computational mesh dates back to Kansa (1990a,b),
and has since generated a substantial literature (see, e.g., Fornberg &
Flyer (2015); Sarler (2005); Chen & Tanaka (2002); Chen (2003); Sarler
(2007)). RBF-based meshless methods extend classical pseudo-spectral
approaches (Fornberg, 1996), where Fourier or Chebyshev expansions are

*

A comprehensive and didactic talk concerning this problem is provided by Paris Perdikaris
and is available, at the time of writing, at http://www.ipam.ucla.edu/abstract/?tid=
16853&pcode=MLPWS3.
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typically used, and can be interpreted as a class of collocation schemes.
Arguably, one of the main reasons these methods have not achieved the
same widespread adoption as FEM is that the resulting linear systems
tend to be significantly less sparse, and therefore more memory-intensive.

For nonlinear methods, the constraining leads to less explored territory.
To the authors’ knowledge, no attempt has been made to combine a fully
constrained formalism with Genetic Programming for solving PDEs, at
least for fluid dynamic applications, and all known approaches in this
direction rely on a penalization framework (see Tsoulos & Lagaris (2006);
Sobester et al. (2008); Pratama et al. (2023); Oh et al. (2023). Concerning
constrained ANNSs, this is arguably the most promising and recent avenue.
The first approach was recently proposed by Basir & Senocak (2022) (see
also Basir & Senocak (2023) and Son et al. (2023)). Much development
can be expected soon.

2.4 Summary and Conclusions

This chapter provided a broad overview of regression methods in machine
learning and of strategies for incorporating physics-based information into the
learning process. We began by framing regression as the task of fitting not just
a single curve, but a stochastic process—a distribution of possible functions—to
observed data. The simplest viewpoint treated the function as the sum of a
deterministic component and a zero-mean stochastic term. We then moved
to a probabilistic interpretation, showing how different assumptions on the
stochastic term lead to different cost functions, which we referred to as data-
driven cost functions. We concluded this part by introducing bootstrapping and
cross-validation, fundamental tools for assessing generalization performance and
understanding the impact of limited data.

We then contrasted the data-driven learning framework with the classical
setting of scientific computing, where the target function is the solution of a
physics-based model, typically expressed as a PDE. Drawing parallels between
training parametric models and solving PDEs numerically allowed us to outline
methods that combine these two perspectives: seeking functions that both match
the available data and satisfy the governing physical laws.

With this foundation in place, we are now prepared to move to the next
chapter, which presents three tutorial exercises illustrating practical approaches
to such hybridization.
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This chapter complements the previous by providing three tutorial exercises
on physics-constrained regression. These are implemented as “toy problems” that
seek to mimic grand challenges in (1) the super-resolution and data assimilation
of the velocity field in image velocimetry, (2) data-driven turbulence modeling,
and (3) system identification and digital twinning for forecasting and control.
The Python codes for all exercises are provided in the course repository.

3.1 Problem 1: "Fill the Gaps" and super-resolution
3.1.1 General Context

In experimental fluid mechanics, velocity fields are often measured using image
velocimetry. This includes traditional Particle Image Velocimetry (PIV, Raffel
et al. (2018)), which relies on cross-correlation to estimate particle displacement
on a regular grid, and Particle Tracking Velocimetry (PTV, Schréder & Schanz
(2023)), in which individual particles are localized and tracked to obtain velocity
measurements at scattered spatial locations. Both approaches require post-
processing to address missing or unreliable data: filtering and outlier removal
in PIV can create gaps in the grid, while PTV data are inherently scattered.
Historically, PIV gaps were filled using non-parametric local averaging methods
(see Section 2.2.5). However, with the increasing adoption of three-dimensional
velocimetry techniques (Elsinga et al., 2006; Schanz et al., 2016), the emphasis
has shifted toward parametric and physics-informed regression methods for
reconstructing complete flow fields.

The key advantage of a parametric model is its analytical representation,
which allows for compact storage and facilitates the enforcement of constraints

*
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such as exact divergence-free conditions in incompressible flows. The resulting
analytic velocity field can be evaluated at any spatial location and provides
symbolic (rather than numerical) derivatives, a capability often referred to as
super-resolution. This removes the need to interpolate the data onto a specific
grid or to compute derivatives using finite-difference approximations. The
incorporation of physical priors or governing equations in the reconstruction
process is commonly referred to as data assimilation, a field that has grown
substantially in recent years (see Gesemann et al. (2016); Schneiders & Scarano
(2016); Agarwal et al. (2021); Sperotto et al. (2022); Sciacchitano et al. (2022);
Jeon et al. (2022)). The present "toy problem" therefore serves as an introductory
exercise in data assimilation for image velocimetry.
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Figure 3.1: Quiver plot of the training data in the constrained RBF regression
exercise of Section 3.1.

3.1.2 Proposed Exercise

In this exercise, we make use of the RBF-constrained framework proposed in
Sperotto et al. (2022) and implemented in the open-source software SPICY*
(meshlesS Pressure from Image veloCimetrY), developed at VKI (Sperotto
et al., 2024). The version provided to participants includes recent extensions
contributed by Manuel Ratz, who currently leads ongoing developments on
meshless data assimilation for turbulence statistics (see Ratz & Mendez (2024)).

In the terminology of Section 2.3, the method belongs to the third category, in

*  https://github.com/mendezVKI/SPICY_VKI
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which hard constraints are used to enforce physical priors during regression. The
task is to reconstruct a noisy velocity field measured in a two-dimensional corner
flow while imposing (1) boundary conditions, (2) divergence-free constraints, and
(3) curl-free conditions. In addition to these hard constraints, we also include
a global penalty term promoting divergence-free behavior. As we will briefly
discuss, enforcing constraints increases memory requirements and numerical
difficulty, whereas penalty terms introduce no additional memory cost and can
therefore assist the regression.

The flow considered here is shown in Figure 3.1. Training samples are
depicted as velocity arrows, and the walls are shown in red. The reference flow is
a 2D potential corner flow with potential Ar™ cos(n@), where A =1 and n =4/3,
corresponding to a corner angle of 135°. We sample the resulting velocity field at
298 quasi-random scattered points and add 30% uniform, uncorrelated noise to
emulate measurement conditions. While this level of noise is higher than what
is typically encountered in practice, it serves to clearly illustrate the robustness
of constrained regression.

3.1.3 Methodology and Results

The constrained RBF approach consists of minimizing the augmented cost
function

A(w,\) = §(w) + aP(w) + X # (w), (3.1)

where & is a quadratic penalty, # a linear constraint, and w are the weights
for the RBF regression (as in (2.13)). The reason for taking the penalties as
quadratic functions and the constraints as linear functions is that by doing so,
setting the gradients dA /dw = 0 and dA/dX = 0 leads to a linear system.
Moreover, the minimization must treat both w and A as unknown. Let us
analyze each of the terms in (3.1) independently.

The first term is the data-driven cost function. We consider a standard
lo norm at the scope. For the regression of a vector field with training data
wi; = u(x*) = (u(x*),v(x*)) this reads:

gt = ("5 o) () (%)
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Figure 3.13: Pendulum assimilation performances. The left-hand side shows
the time-series of (a) the real system (blue), the initial guess (dashed black
line), and the current assimilated prediction (solid red line). The right-hand
side depicts the cost function history at the i—th iteration.
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This chapter provides an introduction to data-driven techniques for the
development and calibration of closure models for the Reynolds-Averaged Navier-
-Stokes (RANS) equations. RANS models are the workhorse for engineering
applications of computational fluid dynamics (CFD) and are expected to play
an important role for decades to come. However, RANS model inadequacies for
complex, nonequilibrium flows, and uncertainties in modeling assumptions and
calibration data are still major obstacles to the predictive capability of RANS
simulations. In the following, we briefly recall the origin and limitations of RANS
models and then review their shortcomings and uncertainties. Then, we provide
an introduction to data-driven approaches to RANS turbulence modeling. The
latter can range from simple model parameter inference to sophisticated machine
learning techniques. We conclude with some perspectives on current and future
research trends.

4.1 Introduction

Accurate predictions of turbulent flows are of vital importance to natural and
engineering systems, including climate, weather forecast, ocean dynamics, astro-
physics, aerospace applications, energy conversion systems, civil engineering, and
many others. The dynamics of fluid flows is described through conservation for
mass, momentum, and energy. While many of the above-mentioned applications
may involve compressible flows, reacting flows, or multi-phase flows, hereafter
we restrict our attention to incompressible, single-phase, Newtonian fluids with
constant properties, described by the celebrated Navier-Stokes (NS) equations,

paola.connella@sorbonne-universite.fr.
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Figure 4.16: Horizontal velocity U and Reynolds shear stresses 7, at various
x positions for the CD flow case. Baseline k —w SST (—); MANST) (. ),
MSEP) (_ A_): High-fidelity data (_]); Non-intrusive X-MA (orange with error
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Figure 4.17: Pressure coefficient C), and friction coefficient C; along z axis
for the WMH flow case. Baseline k —w SST (—); MWUNS)) (—. ), M(SEP)
(—A—); High-fidelity data ([]); Non-intrusive X-MA (orange with error bars);
Intrusive X-MA (black with error bars).
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This chapter offers a principled approach to the prediction of chaotic systems
from data. First, we introduce some concepts from dynamical systems’ theory
and chaos theory. Second, we introduce machine learning approaches for time-
forecasting chaotic dynamics, such as echo state networks and long short-term
memory networks, whilst keeping a dynamical systems’ perspective. Third,
the lecture contains informal interpretations and pedagogical examples with
prototypical chaotic systems (e.g., the Lorenz system), which elucidate the
theory. The chapter is complemented by coding tutorials (online) at https:
//github.com/Magrilab/Tutorials.

5.1 Chaotic dynamical systems

In this lecture, we work with deterministic systems. Deterministic systems
are noise-free systems, which means that there exists only one solution that
corresponds to an initial condition. Chaos is a deterministic phenomenon, which
is characterized by erratic behaviour that is difficult—yet possible, in principle—
to predict. Chaotic dynamics are characterized by extreme sensitivity to small
perturbations, such as changes in the initial conditions, parameters, or external
forcing. Two nearby initial conditions, which can differ by a very small amount,
will practically diverge in time from each other with an initial exponential rate
(Figure 5.1). This makes the time accurate prediction of the solution difficult,
which is sometimes informally referred to as the butterfly effect (Lorenz, 1969).

*
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But not all is lost. The long-term statistics of chaotic systems may be more
predictable than the instantaneous time dynamics. The statistics, in fact, may
not be significantly affected by tiny perturbations, whereas the instantaneous
solution may be. For example, running the same code with the same initial
conditions on a different number of processors should, in principle, provide two
statistically equivalent solutions,* but with completely different instantaneous
fields after a few time steps (Figure 5.1).

In this section, we present some basic concepts and nomenclature, which
will be used throughout this lecture. Detailed references in the subject of chaos
are Holmes & Guckenheimer (1983); Hilborn (2000); Pikovsky & Politi (2016);
Boffetta et al. (2002), among many others.

20 1

VI

0 5 10 15 20 25 30 0.000 0.025
ty PDF

Figure 5.1: Solution of the Lorenz 63 in Lyapunov times (Section 5.1.5) solved
for xo = [20.0,1.0,10.0] (black line) and for x¢ = [20.1,1.0,10.0] (red dashed
line) with a fourth-order Runge-Kutta method.

5.1.1 Dynamical systems’ equations

We work with chaotic systems that can be described as autonomous dynamical
Systems as

%(t) = F(x(t),p),  x(0) =xq (5.1)

where the overdot () is Newton’s notation for time differentiation; x € RN«
is the state vector, where the integer N, denotes the degrees of freedom; the

*

In this lecture, we work with ergodic systems, see Sec. 5.1.1.
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Lorenz 63
Ai target ESN LSTM
1 0.9050 0.9067 0.873
2 9x10°° —8x107° | —8x 1073
3 —14.572 —14.664 —14.0959

Table 5.3: Lyapunov Exponents from LSTM and ESN.

Appendix A: Ridge regression for ESN training

The weights of the output matrix Wy, are obtained by solving

Ny
argmin
W *anomr = x5+ 3 2 [Wour 113 = 9 (Wou)  (5:61)

s.t. I'(ti) = tanh (JinWinX(tifl) -+ pWr(ti,l)) ,
I‘(to) = 0,

where -y is the Tikhonov regularisation parameter, o;, is the input scaling factor,
and p is the spectral radius. The minimization problem (5.61) has an analytical
solution, which is obtained by minimizing the cost function ¢ with respect to
the output matrix W, and setting the result to zero, such that

N
dvdvgi)ut N N?\fm ; {2(Wour(t:) = x(t:)) r(t:)" + 29Wou }
N
B N?\fx > 2 {(Wour(ta)r ()™ + v Wou ) — x(t:)r(t)" } = 0.

=1

Rearranging the terms in (5.62) we find that

Z Wou (x(t)r(t:) " +41) = f; x(t (5.62)
=1

N
= Z (r(ta)Te(t:) +91) Wy, = - r(t)x(t), (5.63)
i=1
which can be written in the compact form
(RRT + 1) W3, = RX, (5.64)
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where R = [r(¢1)|...|r(ty)] and X = [x(¢1)]...|x(tx)] are the horizontal
time-concatenation of the output augmented reservoir state and training data.
The hyperparameters oy, p and v can be optimized during training through
Recycle Validation (Racca & Magri, 2021).

194



6

Reinforcement Learning for
Fluid Mechanics: an overview on
Fundamentals from a Control
Perspective

ONOFRIO SEMERARO*

LABORATOIRE INTERDISCIPLINAIRE DES SCIENCE DU NUMERIQUE
(LISN), CNRS, UNIVERSITE PARIS-SACLAY, ORSAY, FRANCE

This chapter introduces some theoretical foundations of reinforcement learn-
ing and its applications to fluid mechanics from a control theory perspective.
This choice is intended to provide the reader accustomed to flow control the key
ideas in a more familiar vocabulary and a perspective on a vast literature bloom-
ing with tremendous momentum. First, we set the stage by introducing flow
control and re-framing motivations and goals using reinforcement learning. Next,
we shift our focus on some basic concepts by discussing the Hamilton-Jacobi-
Bellman equation, the dynamic programming for nonlinear optimal control, and
the iterative schemes used for approximate solution. Finally, the chapter closes
by reconciling these elements with the terminology of reinforcement learning
practice.

6.1 Flow control and reinforcement learning

Control applications in fluid mechanics have attracted the attention of numerous
research efforts as it is nowadays recognized that the optimization of aerodynamic
flows in aircraft and vehicles design may have a deep impact on the reduction
of pollutant emissions, mitigation of acoustic noise or control of highly complex
conditions such as separation and stall (Abergel & Temam, 1990; Gad-el Hak,
2000; Kim & Bewley, 2007; Brunton & Noack, 2015; Duriez et al., 2016; Rowley

*

onofrio.semeraro@universite-paris-saclay.fr.

195


onofrio.semeraro@universite-paris-saclay.fr

Reinforcement Learning for Fluid Mechanics

& Dawson, 2017). Several methodologies have been applied to control fluids,
ranging from passive to active strategies. Here, we consider active flow control
(AFC): the dynamics is modified by injecting energy into the system using
actuators, acting as transducers for the flow manipulation (Cattafesta IIT &
Sheplak, 2011). The action of the actuators is modulated by policies aimed at
optimizing the performance and the dynamic response in a prescribed manner
(open-loop) or as a function of some observations of the system at hand (closed-
loop). The identification of these policies based on measurements and models of
the physics is the objective of the control design.

In principle, AFC strategies optimize the flow in real time; in practice,
these techniques are mostly used in limited numerical and experimental test
cases. Indeed, approximations based on reduced-order models of the physical
system can critically lose accuracy when control is applied, resulting in poor
performance and lack of robustness. Addressing these challenges using machine
learning (ML) tools (Brunton et al., 2020) and, more specifically, reinforcement
learning (RL) can be a key factor in extending flow control to realistic cases by
circumventing models limitations or lack of robustness due to their data-driven
nature. A possible definition based on the main goals of RL is the following:

"RL studies how to use past data to enhance the future manipulation
of a dynamical system" (Recht, 2019).

The description applies equivalently to standard control theory. This suggestive
similarity in definition and purpose is not coincidental: the common roots of
RL and modern control theory can be found in dynamic programming (DP), a
nonlinear optimization protocol based on the Bellman equation (Bellman, 1958).
Starting from DP, these two disciplines evolved in parallel in the last decades,
leading to the co-development of different approaches to similar problems (Bert-
sekas, 1995; Sutton & Barto, 2018). The solution of the Bellman equation is the
value function, a nonlinear function, which is related to a score associated with
a given action or controlled trajectory. Once the value function is known, one
can determine the optimal policy. However, the Bellman equation results to be
computationally impractical in most cases, even when models are available or
direct methods applied. For this reason, a large body of literature is dedicated to
the numerical approximation of the Bellman equation and the iterative schemes
used for its solution. Iterative methods are particularly interesting as they can
be applied with and without a prior model at hand: from a theoretical viewpoint
these are the premises on the top of which RL algorithms stand (Sutton &
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Barto, 2018).

RL algorithms are iterative, data-driven and solely relying on limited mea-
surements; models are completely replaced or updated during the iterative
process by exploration: the state space of the system is learnt by using past
data extracted from the measurements and the interactions of the system or
agent with the environment. The set of all the actions the agent can act out in
an environment is called action space and a score is assigned to each action for
the value function evaluation. In the limit of full knowledge of this space, the
resulting policy is optimal if the Bellman equation associated with the value
function is fulfilled. In that sense, RL is inspired by nature as it tries to mimic
the process of learning of living beings.

A further ingredient is represented by artificial neural networks (ANN).
The success of ML applications in very diverse fields, ranging from computer
vision and natural language processing to medical diagnosis, is mainly due to the
versatility of ANN and their effectiveness in supervised and unsupervised learning
(Goodfellow et al., 2016). From a mathematical viewpoint, their versatility is
motivated by their properties of universal approximators of nonlinear functions:
the combination of ANN, for the approximation of the policy and the value
function, with RL led to the Deep RL (DRL) framework. The first application
of ANN in RL is often credited to the work by Tesauro (1994), who developed
a program — TD-Gammon — combining temporal difference and ANN to play
backgammon. In the same years, the application of ANN in combination
with dynamic programming was discussed in seminal works on the subject by
Bertsekas (1995), under the name of neuro-dynamic programming; the recent
developments in the field of deep learning and the super—human performance
achieved by DRL in solving games such as go and shogi (Silver et al., 2017)
boosted the popularity of the approach. Together with the vast availability of
open-source packages, this is also one of the reasons why DRL is often seen
"only" as one of the main subfields of ML and used as a black-box tool. However,
this limited perspective risks being rather simplistic: RL is well grounded in
optimal control theory, and the interaction between these two disciplines could
play a key role in future technological challenges such as the development of
driverless cars, self-supervised learning or flow control.
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6.1.1 Standard approaches in flow control: a brief overview

In the following, we introduce a brief, non-exhaustive overview of active flow
control. From a physical point of view, the range of applications is as broad as
the cases in which the presence of a fluid impacts the efficiency or performance
of the dynamical system under investigation; among the examples we can cite,
control mechanisms range from quenching the instabilities responsible for the
transition to turbulence at relatively low Reynolds numbers (Sipp & Schmid,
2016) to the modification of the mean-flow or of the large scale structures for
turbulent cases (Kiihnen et al., 2018).

The DP framework provides the theoretical ground for generalizing the
optimal control problem from linear to nonlinear cases (Bertsekas, 1995, 2019).
A special case is the linear quadratic regulator (LQR), a standard solution of
optimal control which can be derived directly from the Bellman equation and
reduces to the algebraic Riccati equation in the linear, steady limit (Lewis et al.,
2012); when the LQR is combined with optimal estimators, we obtain the linear
quadratic Gaussian (LQG). In these hypotheses, LQR/LQG controllers are an
ideal benchmark for assessing the optimality of the policies. In flow control,
examples can be found in Hégberg & Henningson (2002); Hogberg et al. (2003);
Chevalier et al. (2007). In alternative to the direct methods, one can resort
to the adjoint-based formulation in the same linear/linearized limit (Luchini
& Bottaro, 2014); the latter can be extended to nonlinear cases and model
predictive controllers (MPC) (Glad & Ljung, 2000; Bewley et al., 2001; Xiao &
Papadakis, 2019) or adaptive controllers (Astrém & Wittenmark, 2008). These
techniques have been widely used in fluid mechanics and require for the control
design a physical model, describing the behavior of the system.*

When a physical model is available, as in the case of fluid mechanics, solving
the governing equations can be too slow with respect to the dynamics at play
to be useful, if not even unfeasible: for instance, direct computations of LQR
controllers are limited by the degrees of freedom n that cannot exceed n ~ 10%,
unless resorting to iterative methods (Semeraro et al., 2013). Alternatively,
one can reduce the problem’s dimensionality by identifying suitable low-order
models that preserve the system’s dynamics for control design while meeting
computational and real-time constraints. In fluid mechanics, model reduction

*

Note: the term model will refer only to physical models, including low-order ones. In
contrast, in the ML community, the term defines approximations or parameterized
functions, such as input-output relations mediated by ANN.
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time

Figure 6.1: Example of a nonlinear dynamical system controlled using localized
actuators, localized sensors, and an actor-critic algorithm (see Sec. 6.3); the
figure is adapted from Bucci et al. (2019). In (a), the uncontrolled dynamics
governed by the Kuramoto-Sivashinsky equation is shown in phase-space, by
projecting on the first three Fourier modes (&;). Red dots indicate the 4 unstable
equilibria (E) and 2 travelling waves (T'W) characterizing the dynamics when the
domain length L = 22 (Cvitanovi¢ et al., 2010). Chaotic behavior is observed. In
(b), the system controlled by RL is shown: three policies are computed, driving
the system towards each nontrivial equilibrium. The controlled trajectories
are shown in the spatio-temporal plots (¢)-(d)-(e) for Es — E1, E1 — E3, and
FE> — E3, respectively.

and system identification enjoyed widespread popularity in the last two decades,
with applications ranging from balance truncation (Rowley, 2005; Ma et al.,
2011) to system identification (Ljung, 1999; Noack et al., 2011; Hervé et al.,
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physics or the guidance of a risk metric (Garcia & Fernandez, 2015).

Acknowledgments The author would like to thank Lionel Mathelin (CNRS-
LISN) for sharing ideas on numerous data-driven subjects and providing com-
ments on the chapter; Miguel A. Mendez (VKI-ULB) and Alessandro Parente
(ULB) for suggestions on the final version of this manuscript; Rémy Hosseinkhan-
Boucher, Amine Saibi, and past collaborators Michele Alessandro Bucci (Safran-
Tech) and Nicol6 Fabbiane (Onera) for their stimulating viewpoints. Part of
this research was funded under grants ANR-DGA FlowCon (project-ANR-17-
ASTR-0022) and ANR-JCJC REASON (ANR-21-CE46-0008).

229






7

Model Predictive Control

STEFANO DISCETTI,* LUIGI MARRA, ANDREA MEILAN-VILA

UNIVERSIDAD CARLOS III DE MADRID, 28911, LEGANES, SPAIN

This chapter provides an overview of Model Predictive Control (MPC).
The concept of receding horizon control is introduced, and the main strengths
and limitations of the technique for controlling linear and nonlinear dynamical
systems are discussed. The implementation of MPC for linear discrete time-
invariant systems is presented as a scenario to familiarize the reader with the
main concepts and on-time implementation challenges. The solution via batch
approach is included as an interesting exercise for the reader to dive into the
optimization process.

The formulation for nonlinear dynamical systems is then presented, including
a discussion of the control’s feasibility, stability, and hyperparameter tuning.
Finally, a test case of the application of data-driven MPC for controlling the wake
of a fluidic pinball is presented, in which system identification, hyperparameter
tuning, and control optimization are entirely data-driven.

7.1 What is Model Predictive Control?

The term Model Predictive Control (MPC), also referred to as Receding Horizon
Control (RHC), designates a large class of control methods based on the use of
a model of the system to predict future behavior and identify optimal control
inputs over a recurrently shifting horizon (hence the term receding horizon).
The flexible framework of MPC fostered research efforts in the last decades, with
a recent renaissance thanks to the new opportunities brought by the advances
of machine-learning techniques.

The literature on MPC is very vast and varied. Providing a complete overview
here would be a daunting task. These notes aim to provide a walkthrough of
the main implementation steps, challenges, and caveats without the pretense
of being exhaustive. The interested reader can dive into more profound waters
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by referring to books, covering a broad spectrum of topics within MPC, from
foundational theories to practical applications, and from linear to nonlinear
systems (Maciejowski, 2001; Camacho & Alba, 2013; Wang, 2009; Kouvaritakis
& Cannon, 2016; Borrelli et al., 2017; Grine et al., 2017; Rawlings et al., 2017;
Rossiter, 2017). Several excellent review papers also cover fundamentals and
industrial applications of the method, see e.g. Qin & Badgwell (1997); Lee
(2011); Mayne (2014); Hewing et al. (2020); Schwenzer et al. (2021) among
others.

This section describes the ingredients of MPC and briefly outlines its main
advantages and limitations over other classical control strategies. Finally, it
closes with a short historical perspective on the development of MPC and a
brief overview of recent successful applications in fluid flows.

7.1.1 The rational behind MPC

The main strategy of MPC is sketched in Figure 7.1. The following steps are
generally followed:

o The state of the system is observed at time ¢;.

e The system’s behavior under different input sequences is predicted with a
plant model. The model incorporates previous inputs and states to output
the expected dynamics based on a sequence of future control actions. A
control and a prediction window /horizon are set. If the control window is
shorter than the prediction one, the input is most often left unchanged
after the last instant of the control window.

e The input sequence is optimized to achieve a certain control objective.
This process typically involves minimizing a cost function containing
penalties for the input and the discrepancy with the objective. The
optimization process can include constraints, e.g. bounds for the acceptable
values of states and inputs, rate of change of inputs/outputs, total energy
expenditure, etc. The setpoint, i.e., the target to be achieved for each
of the state coordinates, can be time-dependent. Future changes to the
setpoint can easily be integrated or even be anticipated to account for
time delays in the practical implementation.

o The optimal control sequence is applied only for a short time (in discrete
systems, ideally, down to a single step).
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Figure 7.1: Graphical representation of the MPC strategy for stabilizing around a
setpoint (horizontal dashed line). Past measurements (light-blue-shaded region)
depict system state (blue lines with squares) and actuation (green line). The
control window, of length w,, is shown in orange. Dashed lines indicate future
state and actuation predictions. Blue circles represent a discrete sampling of
the system state prediction. The continuous formulation allows non-mandatory
discrete sampling and allows step-like actuation requirements to be relaxed.
Figure reproduced from Marra et al. (2024), licensed under CC BY 4.0.

o The state is observed after applying the control, and the prediction process
is repeated to update the control action.

The open approach of MPC is particularly well-suited for controlling systems
with multiple inputs and outputs, allowing for the easy incorporation of hard
constraints and flexible implementation of control objectives. The cornerstone
of MPC is the plant model, which should be sufficiently accurate and robust
to ensure accurate prediction of future states under control actions but, at the
same time, simple enough to allow real-time computation.

7.1.2 Main advantages and limitations
MPC is a powerful control strategy that brings forth several desirable features:
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e The framework is highly flexible, allowing the application to linear, non-
linear, continuous, and discrete dynamical systems, as long as the plant is
modeled with sufficient accuracy.

e The implementation of constraints is straightforward. This is particularly
relevant for applications where safety concerns are critical. Furthermore,
control feasibility studies can be performed offline if a plant model is
available. For instance, technological constraints such as intrinsic time
delays, rate of change/update of the actuation, and upper/lower bounds
of control actions can easily be tested and stressed.

o It incorporates a model of the system, implemented in a predictive frame-
work, which allows anticipating future events and taking corrective actions
in advance. This provides a significant advantage with respect to reactive
controllers, which react to current and past states/errors.

e The prediction framework handles multiple inputs and outputs, thus
allowing the development of coordinated control strategies.

e Online updates of the model enable adaptive control under changes in
operating conditions, parameters of the dynamics, etc. In contrast, classical
control strategies often require manual re-tuning.

e The update of the initial state of the prediction implicitly introduces
a degree of robustness. Deviations from the expected state are indeed
directly observed when updating subsequent control actions, and the
control input is updated according to such discrepancy.

On the downside, online implementation is still a grand challenge. Solving
the optimization problem is computationally intensive. The computational cost
increases with the model complexity. Long prediction horizons can easily lead
to large latency times, thus jeopardizing real-time control. Short prediction
horizons reduce the computational cost, but on the other hand, might lead to
short-sighted control policies which might be affected by stability issues and
poor performance. Fast-paced advances in hardware, however, are paving the
way toward more affordable MPC implementation, thus further expansion of
this control strategy is to be expected shortly.

Furthermore, the model is a cornerstone of MPC implementation. Models
should be parsimonious for efficient implementation but, at the same time,
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accurate over sufficiently long time horizons. While for some systems, analytical
models might be available from applications of first principles and governing
equations, in general, plant models must be distilled from data of the system
behavior. Reliable system identification is the key to an effective implementation
of MPC. Recent advances in data-driven system identification and modeling are
progressively eroding this barrier, enlarging the portfolio of possible applications

of MPC.

7.1.3 Towards application to chaotic high-dimensional systems
and fluid flows

The concept of formulating a control problem as a moving-horizon controller,
i.e., a sequence of optimizations of open-loop sequences with a recursive update
of the state, roots back to the work of Propoi (1963). The first step towards
practical applications was taken only a decade later, with the works of Richalet
et al. (1978) and Cutler & Ramaker (1980). Richalet et al. (1978) refers to the
method as Model Predictive Heuristic Control (MPHC), stressing the heuristic
nature of the control strategy. A few years later, Cutler & Ramaker (1980)
developed the Dynamic Matrix Control (DMC), primarily targeted to the oil
refining industry. The DMC is based on a piecewise linear model, progressively
updated using the discrepancy between the predicted output and the measured
states. The work was later expanded by Garcia & Morshedi (1986), with the
Quadratic Dynamic Matrix Control (QDMC). The method integrates quadratic
programming into DMC, allowing it to handle directly process constraints.

During the 80s, the work on MPC was mostly directed at establishing
theoretical grounds for its application in industry. In the following decade,
strong efforts were targeted at addressing the robustness and stability of the
procedure, with the introduction of Robust Model Predictive Control (Campo
& Morari, 1987). For an excellent survey on the topic, the reader is referred to
the review by Bemporad & Morari (2007).

Since then, MPC has been widely used in numerous industrial applications.
MPC is particularly popular in the process industry, with the petrochemical
sector as its main historical promoter. It found also extensive application in
power electronics (Vazquez et al., 2014), building climate control (Oldewurtel
et al., 2012), agriculture (Ding et al., 2018), robotics (Shi & Zhang, 2021),
automotive (Hrovat et al., 2012), among others (see Schwenzer et al., 2021 for a
detailed review).
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Applying MPC to turbulent flow control is extremely challenging since
the system to be controlled is often strongly nonlinear and high-dimensional
and evolves at timescales that are difficult to tackle with current hardware.
Nonetheless, the potential to disclose unforeseen optimal control strategies
fueled the interest in MPC for flow control. Early efforts have targeted using
simulation as an exact plant model (Bewley et al., 2001) to relaminarize a channel
flow using unsteady blowing/suction with zero net mass flux. Exploiting receding
horizon control strategies undisclosed the interesting result that formulations
targeted to drag minimization are less effective than formulations aimed to
control the terminal (i.e., at the end of the optimization horizon) turbulent
kinetic energy if relaminarization is sought. The results highlight that strategies
that allow exploration or deviation from the desired state in the short term can
still effectively achieve the final goal at the end of the horizon.

A remarkable evaluation of MPC against other model-based and model-free
techniques for the delay of the laminar/turbulent transition has been conducted
by Fabbiane et al. (2014). More recently, Morton et al. (2018) proposed a
framework called DeepMPC, which combines the receding-horizon approach
with a deep neural network for the plant model (in this case to approximate
the mapping of the Koopman operator), and applied it to the control of the
flow past a circular cylinder. A data-driven Koopman-based MPC framework
was also used by Arbabi et al. (2018) to stabilize a lid-driven cavity. The basic
idea is to lift the nonlinear dynamics in a higher dimensional space where the
dynamics leverage the Koopman operator and delay embeddings.

More recently, Bieker et al. (2020) applied DeepMPC to the wake of a
fluidic pinball and extended the capability of the framework to account for
state observation from a limited number of sensors. The low-order model
is approximated using a Recurrent Neural Network (RNN). To reduce the
computational cost associated with online optimization, Sasaki & Tsubakino
(2020) proposed a method to design a control law using regression analysis.
In this approach, data from offline simulations was used to approximate the
behavior of MPC. Additionally, Krishna et al. (2022) investigated the use of
MPC to optimize the trajectory planning of an active mobile sensor in an
unsteady fluid flow field. In this case, the plant model is imposed as a double-
gyre flow field, and the focus is on the effect of actuation and state penalty
parameters on the strategy adopted by MPC to exploit unsteady coherent
structures. Recently, Déda et al. (2023) compared MPC with a neural-network
controller for several systems, including the compressible flow past a cylinder.
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Neural network controllers show promising results when sufficient data are
available for training; however, in the low-data limit, parsimonious descriptions
of the dynamics of the system (see Kaiser et al., 2018b) would provide an
advantage to MPC.

7.2 A glimpse of MPC of linear systems

This section focuses on the formulation and implementation of MPC for the
control of linear systems. While exploring a simpler scenario can certainly help
the reader grasp the fundamental concepts behind MPC implementation, it is
also important to note that the history of fluid mechanics is rich with successful
applications of linear model-based flow control, such as transition delay (Bewley
& Liu, 1998; Bagheri et al., 2009a; Semeraro et al., 2013) or skin friction drag
reduction (Cortelezzi et al., 1998; Kim, 2003). The problem formulation and a
strategy to solve it via batch approach are presented here.

7.2.1 Problem formulation

Consider the following linear discrete time-invariant (DTI) system:

Xp41 = Ax; + Buy (71)
yi = Cx; + Duy (7.2)

Here x € R™, u € R™ and y € R? are the state, input and output vectors,
respectively. The state-transition matrix A contains n x n elements (assumed
here being real). The eigenvalues of A define the stability of the system. In
particular, the system is stable if all eigenvalues have a norm smaller than 1.
The matrices B, C, D are referred to as input (or control) matrix, output (or
measurement) matrix, and feedthrough matrix. For a single input system, B is
simply a column vector of size n x 1, weighing the effect of the input on each
of the state variables. The output matrix C contains p x n elements if p linear
combinations of the n state variables are measured; in the case of full-state
measurement C is the identity matrix I,, of size n x n. The feedthrough matrix
D, of size p x n represents the effect of the input directly on the measured
output variables, without any interaction with the system dynamics.

We will assume in the remainder of this section full-state measurement (i.e.,
C =1,,) with no feedthrough (D = 0).
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the nonlinear behavior of turbulent flows. Variants of MPC, such as Robust
MPC and Stochastic MPC, are designed to take into account the parametric
uncertainty of the model, external disturbances, etc. Nonetheless, modeling
these effects is often a complicated task, and implementation of Robust and
Stochastic MPC entails a substantial increase in the computational cost
of the procedure, which would be very challenging to afford for real-time
control. Furthermore, latency and time delays of turbulent flows introduce
the additional complication of potential shift between actuation and effect
on the flow. Longer prediction horizons are required to account for this
issue. This further pushes towards models capable of delivering reliable
long-term predictions of the flow, at least for those directions object of
the control. The rewards for addressing these challenges are significant;
Bewley et al. (2001) identified already more than 20 years ago that efficient
actions for flow control should be long-sighted, at least in the framework
of relaminarization and drag reduction of wall-bounded flows.

e Dependence on the expertise of the user: the performances of MPC
depend on the selection of hyperparameter and, consequently, on user
expertise. Learning-based MPC offers solutions to learn parameters based
on simpler performance indicators. It is foreseeable that there will be a
more intense blending in the future of MPC with deep-learning methods
to leverage this principle.

In conclusion, while the limitations underscore the current challenges, they
also unveil interesting opportunities for refining Model Predictive Control in
fluid flow applications.
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This chapter reviews the fundamentals of dimensionality reduction, a subset
of machine learning that seeks to identify low-dimensional representation of
high-dimensional data. This is the essence of many data processing tasks, from
filtering to pattern identification. The lecture begins with a brief review of the
general concepts and the two main families of methods, namely autoencoders
and manifold learning. We then move to linear autoencoders, which encompasses
various popular decompositions in fluid dynamics, such as the Proper Orthogonal
Decomposition, Dynamic Mode Decomposition and their variants (e.g. Spectral
POD (sPOD) and Multiscale POD (mPOD)). Finally, we complete the tour with
a brief overview of nonlinear methods for manifold learning, including kernel
PCA, Isometric Mapping (ISOMAP), Locally Linear Embedding (LLE), and
t-SNE (t-Distributed Stochastic Neighbor Embedding). To promote hands-on
experience, this lecture provides two tutorial sessions. The Python codes for all
exercises are provided in the course repository.

8.1 A note on notation and style

We stick to the notation introduced in 2.1, with the following additional elements:

Sampling The sampling of a continuous function is stored in a vector or
a matrix. We assume uniform sampling both in space and time. For vector
d(t) sampled the time domain ¢, considering a discretization t;, = kAt, with
fs = 1/At the sampling frequency and k£ = [0, 1,...n; — 1], we could write d[k]
or di or d(tx). The same is true for the space domain, although a matrix linear
index must be introduced. This is important when we transform a matrix (for
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example, a spatial realization of a quantity) into a vector.

For example, let p[i, j] be the 2D discretization of a pressure field p(z,y),
where the axes were discretized as ¢ € [0,n, — 1] and j € [0,n, — 1]. For the
purpose of this lecture, that field would be written as a single "snapshot" vector
p € R", with n, = nyn,. The entries in this vector would be accessed with
a matrix linear index, denoted in bold, i.e. p[¢]. The way this accesses the
data in the matrix depends on whether the flattening is performed column-wise
or row-wise. For example, for a matrix A € R3*3, the column-wise and the
row-wise matrix indices are*

column-wise 7 : A =

N = O
T W
S W O

1
4
7

oo Ot N

6
7 row-wise ¢ : A =
8

In a vector quantity, e.g. a velocity field U [u(z;), v(x;)] € R™*2 we consider
that the reshaping stacks all the components one below the other producing
a state vector of size n, = ng ngny where ng = 2 is the number of velocity
components.

8.2 General Concepts

Dimensionality reduction aims to represent high-dimensional data in a lower-
dimensional space while retaining the key features and patterns of variabil-
ity. The underlying assumption is that, although the data may appear high-
dimensional, its meaningful structure often lies on a much lower-dimensional
manifold. For example, in face recognition, the variability in images of different
individuals can often be explained by a few dominant factors such as pose, light-
ing, or expression. By identifying these dominant patterns, one can construct a
reduced set of basis images that retains the information necessary for recognition
(Swets & Weng, 1996; Turk & Pentland, 1991).

In its most general form, the process of dimensionality reduction is an
“information bottleneck” (Vladimir Cherkassky, 2008) composed of an encoder
mapping and a decoder mapping, as shown in the schematic of Figure 8.1. A
high dimensional vector € R™* is mapped onto a low dimensional one z € R"=
(with n, < ng) by a mapping z = 8(x|X™*), called encoder, which must be

*

Recall that here use Python-like indexing. Hence, the first entry is 0 and not 1
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inferred from a set of training data X* € R™*™_ The opposite process is

carried out by a mapping € = D (z|Z*), called decoder, which seeks to bring
the mapping back to the original dimension and is trained on a set of training
data Z* € R™=*"t, The composition of the encoder and the decoder is referred
to as autoencoder and the space R"= is referred to as latent space. Both
the encoder and the decoder functions can take the form of a parametric or
nonparametric function (see Chapter 2).

E(x| X))\ Z") = :c\Z*
wER”“ ¥ € R™ mER”Z
N, <K Ny
Decoder

Encoder

Figure 8.1: Schematic illustration of the general process of dimensionality
reduction, viewed as an “information bottleneck”. The encoder maps a high-
dimensional input to a low-dimensional one, often called latent space. The
decoder does the opposite.

Autoencoders provide a general framework for dimensionality reduction.
The goal is to learn a compressed representation z of the data & such that an
approximate reconstruction & can still be obtained and the essential features of
the original data are preserved. This is useful for at least three reasons. First,
it offers interpretability and economy: if the relevant variability in the data is
contained in n, < n, dimensions, then the remaining n, — n, dimensions can
be ignored. Second, the reduced representation z may serve as input to simpler
models or supervised learning methods, lowering computational cost. Third, by
focusing on salient features, the autoencoder can learn to discount irrelevant
variability, such as noise or outliers—indeed, most denoising strategies can be
viewed as autoencoding.

A related but distinct class of techniques is manifold learning. These
methods do not aim to reconstruct the original data and therefore do not require
a decoder. Instead, their objective is to embed the data in a lower-dimensional
space while preserving some notion of similarity or neighborhood structure.
The central assumption (Zheng & Xue, 2009) is that the high-dimensional
data lie on (or near) a low-dimensional manifold, and the task is to uncover
coordinates on this manifold that faithfully represent the relationships between
data points. Manifold learning is widely used for visualizing high-dimensional
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datasets, detecting clusters or anomalies, and exploring geometric structure.

The distinction between autoencoders and manifold learning is subtle but
important. While certain autoencoder architectures can serve as manifold
learners and vice versa, most manifold learning algorithms produce compressed
representations that are not designed to be decoded back to the original high-
dimensional space.

8.3 Linear autoencoding and manifold learning: PCA

We consider first a simplified toy problem. Consider the dataset in Figure 8.2.
This set consists of n, = 150 datapoints & € R3*! that have been sampled
from three distributions in a three-dimensional space. The color in the markers
encodes the different distributions (clusters). The dataset can be compactly
represented by a dataset matrix X € R3*1%0 with each point (vector) along its
columns. The data has been mean-centered (i.e. the mean vector over the rows
of X is zero).

-0.5
-1.0

-10-15

—05
05 00
10 i

20 15
Figure 8.2: Plot of the dataset considered in this section: n, = 150 belonging to
three probability density functions are sampled in a three-dimensional space.

To illustrate the main ideas behind dimensionality reduction, we here seek to
identify the best 2D representation of the data. That is, we seek a compression
ratio 3:2, from R? to R%. A simple approach would consist in projecting along
any of the planes defined by the Cartesian coordinate frame. The projection
requires defining a basis matrix, here denoted by B, whose columns collect the
basis vectors in the projected space. For instance, the projection onto the (¢, 5)
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plane is
10
Zp=B'X with B=1|0 1], Zp € R?*150 (8.1)
0 0

We evaluate the quality of a projection by the amount of information it
preserves. The operation in (8.1) is a linear encoder. The matrix B has no
inverse. Nevertheless, it is possible to show™ that the “best possible” inversion
of (8.1), in an Iy sense, is

Xp=BZp=BB'X = 43X, (8.2)

where A = BBT is the linear autoencoder associated with the basis B.
In this simple example, the autoencoder removes the last row of X, and this
information cannot be recovered.

We measure the performance of this linear autoencoder using the I norm:

J(B)=|X - Xgl2= X - AsX]|2. (8.3)

A natural question is that of identifying the basis vectors that allows to
minimize (8.3). This leads to the Principal Component Analysis (PCA).
Without entering into the details of the derivation,’ the basis that leads to this
optimal reconstruction is the solution of the following eigenvalue problem:

(XXTu; = Nu; = (XXTU = AU, (8.4)

where the eigenvectors u; are the principal components, collected as columns
of the matrix U € R3*1%0 and the eigenvalues ); (collected in the diagonal of
A € R3%3) controls their relative importance. It is easy to show that these
are non-negative positive numbers and (8.4) is the first step to compute the
Singular Value Decomposition (SVD) of X. Keeping the focus on the
definition of the best linear autoencoder, we have

2
XU =UZy = UUTX — Ty = chjuj with Ckj = ’U,JT:Bk, (8.5)
=1

This follows from minimizing || X — BZ||2 with respect to Z: the optimal solution is
Z = BT X, which is equivalent to using the Moore-Penrose pseudoinverse of B.
T An extensive presentation is proposed by Jolliffe (2002) and Bishop et al. (2006).
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Figure 8.3: Comparison of the data reconstruction via the autoencoder Ay (top
left) versus the autoencoder Ap (bottom left). On the right, the data is shown
in the 2D representations provided by each base, keeping the cluster colour code.

with Ay = UUT the PCA autoencoder. The summation on the right recalls
that each of the approximation (&) of a data point (xy) is a linear combination
of the principal components u;. The coefficients cy; = Zy[j] € R™*, written as
a vector over the index j, is the PCA-transformed data: that is the projection
of the k-th data point & € R™ onto the principal components.

This is the encoding function € introduced in Figure 8.1; the entries of the
encoded representation are inner products:

zi = 8(z;) — zi[j] =zl u; = ufa:z (8.6)

The decoding function for the PCA is simply &; = D(z;) = Uz;.

Figure 8.3 shows a comparison between the PCA and the trivial projection
onto B. The figures on the left show the reconstructions Xy (top) and Xp
(bottom) while the figures on the right show the data in the reduced space: the
plane (u1,us2) for the PCA and the plane (i,7) for the trivial projection. In
the reconstruction plots, the blue markers indicate the original data, while the
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T-SNE Manifold in 2D

Figure 8.16: Mapping of the cylinder dataset onto R? using t-SNE.

8.8 Summary and Conclusions

This chapter surveyed linear and nonlinear dimensionality reduction methods,
emphasizing the distinction between autoencoders (which focus on reconstruc-
tion) and manifold learning (which focuses on preserving relational geometry).
We began with PCA—a foundational linear method interpretable both as an
optimal linear autoencoder and as a manifold-learning procedure preserving
pairwise correlations—and then branched into two directions: (i) linear methods
for data-driven modal analysis and (ii) nonlinear manifold learning, which can
uncover low-dimensional embeddings even when the underlying structure is
curved. While the latter remains relatively unexplored in fluid mechanics, the
tutorials presented here aim to provide intuition and encourage further use.
Regarding data-driven modal analysis, the main conclusions from the four
investigated decompositions (POD, DMD, SPODs, mPOD) are as follows:

1. POD offers the strongest autoencoding and therefore the most effective
dimensionality reduction. This makes it ideal for data compression, noise
reduction, and statistical filtering. However, its modes typically contain a
broad range of frequencies, which can make physical interpretation less
transparent.

2. DMD provides the cleanest frequency separation and, in principle, can
identify the normal modes of the underlying dynamics. It is the method
of choice for data-driven stability analysis and for flows dominated by
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coherent oscillations at fixed frequencies (e.g., vortex shedding, cavity
tones). However, DMD relies on representing the temporal dynamics of
each mode as a single complex exponential. When the dataset contains
intermittent phenomena, time-varying frequencies, or broadband structures
(as is common in experimental and turbulent flows), the DMD modes
either decay rapidly (modulus < 1) or distribute across many weak modes.
In such cases, the decomposition does not converge.

3. Spectral POD (Towne et al. 2018) provides frequency-resolved modes
with strong robustness to noise, thanks to its Welch-type averaging. This
makes it particularly well-suited for stationary datasets with long time
histories. It is primarily an analysis tool rather than a compression method
(it generates far too many modes!), and it is not directly applicable to
transient flows.

4. Filtered SPOD (Sieber et al. 2016) provides a simple and tunable
bridge between POD and harmonic decompositions by applying a diag-
onal temporal filter to the correlation matrix. It is robust to noise and
practical for exploratory analysis of leading frequency ranges. However,
the relationship between the filter parameter and the resulting spectral
selectivity is indirect, and the method assumes stationarity.

5. mPOD allows explicit partitioning of the data into prescribed frequency
bands while retaining energy optimality within each band. It is well suited
for multiscale and transient flows and provides useful time—frequency
localization. However, it involves more hyperparameters and requires user
experience to tune. Moreover, when the prescribed bands become too
narrow, the underlying filter design becomes poorly localized, making
mPOD unsuited for identifying purely harmonic modes.

Finally, the nonlinear manifold learning examples demonstrated that different
similarity metrics (Euclidean, geodesic, or local linear) lead to different low-
dimensional embeddings, yet all revealed qualitatively consistent low-dimensional
structure. In our case, a dataset in R*?%0 could be meaningfully represented in
just 2 or 3 dimensions. Whether such reduced spaces can be used to formulate
predictive dynamical models—and then be reliably lifted back to physical
space—remains one of the most exciting open frontiers in physics-informed
machine learning and reduced-order modeling.
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This chapter delves into data-driven equation-free models, focusing on inte-
grating physical insights through reduced order models (ROMs). It emphasizes
the transformative potential of these approaches in advancing our understanding
of complex non-linear dynamical systems. The chapter reviews cutting-edge
techniques and case studies across various industries, demonstrating the power of
data-driven modeling. The chapter introduces data analysis and post-processing
methods, resulting in precise and entirely data-driven hybrid ROMs. By combin-
ing modal decomposition and deep learning, these methods unveil fundamental
patterns in dynamic systems, enhancing our grasp of underlying physics. They
also enable database reconstruction from limited measurements and forecasting
of system dynamics. These hybrid methods, combining experimental and numer-
ical data, offer accurate alternatives to resource-intensive numerical simulations,
reducing computational costs. They prove versatile for optimization and control,
particularly in fluid mechanics, providing valuable insights into complex non-
linear dynamical systems. The chapter elucidates the mathematical foundations
of these hybrid methods and provides practical application examples, offering a
comprehensive guide to their implementation and potential in both scientific
and practical contexts.

9.1 Introduction

In recent years, the proliferation of high-quality data has ushered in a trans-
formative era in the realms of machine learning and reduced order modeling.
This surge in data availability has paved the way for novel approaches to un-

*
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raveling the intricacies of complex non-linear dynamical systems without the
need for a priori knowledge of governing equations. In this exciting landscape,
data-driven equation-free models have emerged as a beacon of promise, offering
an alternative path to comprehending and manipulating these intricate systems.
Using the power of machine learning, these models have the capacity to extract
knowledge directly from data, bypassing the traditional reliance on theoretical
principles. This paradigm shift encourages the exploration of data-driven av-
enues to unveil new hypotheses and construct models that hitherto may have
remained concealed.

The implications of this transformation extend far and wide, with applica-
tions spanning diverse industries such as aerospace, automotive, construction,
pharmaceuticals, chemicals, manufacturing, and more. The ability to harness
data to decipher complex systems has the potential to revolutionize problem-
solving and decision-making across these domains.

Broadly categorized, there are two primary approaches to data-driven model-
ing, each offering unique advantages and insights. The first approach centers on
data forecasting models, which are adept at predicting future data trajectories
through the utilization of machine learning techniques, prominently including
deep neural networks. Notably, these models do not incorporate explicit physical
principles into their construction. In contrast, the second approach is exemplified
by reduced order models (ROMs) enriched with physical insights. These hybrid
models skillfully integrate an understanding of the underlying physics with
advanced pattern identification techniques such as proper orthogonal decompo-
sition Sirovich (1987) and dynamic mode decomposition Schmid (2010). This
amalgamation of physical principles and data-driven methodologies enables the
extraction of pertinent spatio-temporal information from the data, providing a
deeper understanding of the system’s behavior.

The integration of hybrid data-driven ROMs into the study of non-linear
dynamical systems brings forth a multitude of advantages over relying solely
on deep neural networks. These ROMs empower researchers to identify key
instabilities and mechanisms within the studied systems, shedding light on
critical aspects of the underlying physics. Furthermore, they pave the way for
the development of potent tools for optimization and control. Armed with a
profound understanding of the physical intricacies at play, these models facilitate
more accurate system phase predictions, the adoption of controlled and robust
strategies, a reduction in computational costs for numerical simulations, and
the streamlining of information collection in experimental setups.
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In this Chapter, we explore data-driven equation-free models, emphasiz-
ing the integration of physical insights through ROMs. We delve into the
opportunities and challenges presented by these innovative approaches, while
highlighting their potential to reshape our understanding of complex nonlinear
dynamical systems. Through a comprehensive review of current state-of-the-art
techniques and case studies spanning multiple industries, we aim to demon-
strate the power of data-driven modeling in advancing scientific knowledge and
practical applications.

More specifically, this chapter introduces two distinctive data-driven method-
ologies for the development of ROMs: modal decomposition tools and deep
learning architectures. Modal decomposition techniques, notably prevalent
in fluid dynamics, serve as invaluable instruments for extracting the physical
patterns driving the dynamical systems in question. These patterns are often
intimately linked to flow instabilities that trigger profound changes within the
flow itself. By distilling the dimensionality of the system to a select few rel-
evant patterns that encapsulate the flow dynamics, these methodologies lay
the foundation for more concise and interpretable models. It is within this
reduced dimensionality framework that deep learning architectures are em-
ployed, enabling the creation of diverse ROMSs grounded in the principles of flow
physics, often referred to as hybrid physics-aware ROMs, with broad-ranging
applications.

The synergy between modal decomposition and deep learning techniques
offers a clear advantage, fostering the development of hybrid physics-aware
ROMSs, also known as hybrid machine learning tools. In the expansive realm
of fluid dynamics, where datasets are characterized by immense dimensions,
often reaching tens of millions of grid points in typical computational fluid
dynamics (CFD) problems, the integration of these methodologies becomes not
only advantageous but also essential. Such an approach alleviates computational
bottlenecks associated with purely deep learning models, streamlining the cali-
bration of neural network schemes (NN) and reducing the overall computational
cost. This reduction in dimensionality facilitates the implementation of more
straightforward schemes, such as one-dimensional designs, as opposed to the
computationally intensive three-dimensional architectures. In doing so, it opens
new horizons for the efficient modeling of complex systems within fluid dynamics
and beyond.

The models presented in this Chapter, whether they are solely based on modal
decomposition or hybrid models based on deep learning and physical principles,

297



Data-driven post-processing and reduced order modeling

can be used to develop three different applications: (1) patterns identification,
suitable to study the physics behind the data analyzed; (2) data reconstruction,
capable of reconstructing two- or three- dimensional databases from a set of
selected points, using data from sensors, or repairing missing data; (3) data
forecasting, which builds ROMs to predict the spatio-temporal evolution of the
signal analyzed. This chapter reviews the mathematical background behind
each method and will illustrate some of their most relevant applications.

This summary reveals the fusion of modal decomposition and deep learning
methodologies, promising to illuminate the path toward enhanced understanding,
more efficient modeling, and transformative applications in the realm of reduced-
order modeling. As we embark on this exploration, we invite the reader to
delve into the depths of these innovative techniques, unlocking the potential to
bridge the gap between data-driven and physics-informed models and advance
the frontiers of knowledge and practical implementation.

9.2 Methodology

This section introduces the methodology encompassing modal decomposition
and deep learning architectures, with a focus on developing diverse ROMs. These
ROMs, refined through complex database treatments, become versatile tools for
addressing a wide array of complex applications. As previously introduced, the
deep learning models are actually hybrid since modal decomposition algorithms
are integrated into these in the data pre-processing stage: as mentioned before,
these models are known as hybrid physic-aware ROMs. Compressing the input
data down to its main features and then training a neural network with this
data increases the model’s performance whilst reducing its computational cost.
The PYTHON codes of the hybrid methods presented in this chapter can be
found in ModelFLOWs-app.*

These fully data-driven methods inputs datasets in matrix form, consisting
of a set of K snapshots vy = v(t;), where ¢ is the time value at instant k,
which are conveniently collected into a snapshot matrix as

VI = [v1,Va, e, Vi, Vis 1, oo, VE-1, VK] (9.1)

Depending on the dataset’s complexity, it might be more advantageous to
restructure the data into a "snapshot tensor." This involves segregating and

*

modelflows.github.io/modelflowsapp/
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Figure 9.1: The fibers of a third-order tensor.

arranging the various components of the dataset into distinct tensor components
while also separating the spatial coordinates for improved organization. A
fluid dynamics dataset is usually formed by velocity components, but other
components can also be included as part of the database analyzed (depending
on the problem under study). For example, in atmospheric boundary layer
flows, such as those encountered in meteorology, we typically consider both
velocity and pressure fields; when addressing turbulent combustion problems,
our dataset expands to encompass temperature, pressure fields, and various
chemical species; in the case of flutter analysis during flight tests, an array
of accelerometers strategically placed on the aircraft’s surface gathers crucial
system data, forming a signal that undergoes analysis to predict the evolution
of this instability, among other scenarios, et cetera.

Within a snapshot tensor, the snapshot matrix is accommodated within a
multidimensional array, contingent on several indices. The fibers of the snapshot
tensor are formed by the corresponding rows and columns of the matrix. An
illustrative example of a third-order tensor showcasing these tensor fibers is
presented in Figure 9.1.

The methods outlined in this chapter typically employ fourth and fifth-
order tensors for analyzing two-dimensional and three-dimensional datasets,
respectively. To illustrate this concept more clearly, let us consider a two-
dimensional dataset (a plane) with three velocity components: stream-wise
velocity u,, normal velocity u,, both part of the in-plane velocity u, in a
Cartesian coordinate system with dimensions Jo X J3, as follows:

u(ij,ng,tk) fO?”ngl,...,Jg, j3=1,...,J3, k=1,...,K. (9.2)

The snapshot data can then be re-arranged into a fourth-order Jy x Jo x J3 x K-
tensor V', and now the components Vj, ;, ;. . are defined as

Vigagak = Uz(Tj2 iz ti)s Voo sk = Uy(Tj2, Y53, tk)- (9.3)
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Two different architectures of neural networks are used, RNN and CNN.
The model collects data from the transient stage of the numerical simulation
and predicts its evolution in time. In Fig. 9.15, we present a representative
snapshot of the C'Oy concentration along with the predictions and the temporal
evolution of two characteristic points. Both architectures correctly predict the
snapshots. The point situated in the far field is accurately predicted, as is the
point located within the mixing layer between the fuel and the oxidizer. The
ROM is more than 100 times faster than the CFD simulation and the RRMSE
in the predictions is less than 3 — % for the RNN architecture and 4% for the
CNN.

9.4 Conclusions

Our exploration of data-driven equation-free models, with a strong emphasis on
the integration of physical insights through ROMs, reveals a landscape brimming
with potential for understanding and manipulating complex non-linear dynamical
systems. This chapter has elucidated the transformative power of data-driven
modeling, showcasing its capacity to advance both scientific knowledge and
practical applications across diverse industries.

We introduced two pivotal data-driven methodologies: modal decomposition
tools and deep learning architectures, each with its unique advantages and
applications. Modal decomposition, rooted in fluid dynamics, provides a means
to extract physical patterns governing dynamic systems. These patterns are
intimately linked to flow instabilities, offering a deeper understanding of complex
phenomena. Deep learning, on the other hand, leverages the prowess of neural
networks to create versatile ROMs grounded in flow physics, forming the basis
of hybrid physics-aware ROMs.

The synergy between these methodologies, demonstrated through hybrid
physics-aware ROMs or hybrid machine learning tools, presents an opportunity
to overcome computational bottlenecks, reduce costs, and streamline model
development. This is especially crucial in domains with vast datasets, such
as computational fluid dynamics, where dimensional reduction enables more
efficient modeling.

We also highlighted the diverse applications of these models, including pattern
identification, data reconstruction, and data forecasting, underscoring their
adaptability and versatility. These applications provide insights into underlying
physics, identifying modes, in some cases, connected to flow instabilities and
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triggering changes in the flow. This knowledge opens new avenues for flow
control applications and reveal physical phenomena hitherto unknown in complex
problems.

Our results presented focusing into the fusion of modal decomposition and
deep learning methodologies serves as a summary to the potential of data-
driven modeling. By combining modal decomposition methods, to reduce data
dimensionality and extract physical patterns of the flow, with neural networks,
we unlock new avenues for enhanced understanding and efficient modeling of
complex systems. As we look ahead, these innovative techniques are poised
to push the boundaries of knowledge and practical implementation, making
data-driven equation-free models a powerful tool for tackling the challenges of
the modern scientific landscape.
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Machine learning and artificial intelligence techniques have transformed
our everyday lives within the past few years. In areas where vast amounts of
data are available, the aforementioned techniques have had tremendous success,
especially when mathematical models are lacking. Instead, engineering tools
in general and computational fluid dynamics tools in particular rely on first-
order principles that directly enable the description and investigation of system
behavior. Based on these principles, derived tools significantly contribute to the
green transformation of the aviation sector. However, such tools are far from
perfect and suffer several shortcomings, e.g., computational bottlenecks once a
massive amount of simulations is required or the problem of deriving accurate
turbulence models to describe small-scale turbulent behavior. Machine learning
techniques are generally regarded as a possibility to enhance and complement
first-order based numerical simulation tools to circumvent these shortcomings
and yield a pathway towards enhanced aerodynamics. This lecture will shed
some light on how machine learning can be used in this direction and is split
into two parts. The first part focuses on how machine learning models can
be employed during optimization and uncertainty quantification. This will be
demonstrated based on an airfoil example. The second part will focus on special
requirements for machine learning arising from the nature of fluid dynamics
and showcase a few examples of research performed at the German Aerospace
Center in this direction.

philipp.bekemeyer@dlr.de.
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10.1 Motivation

When designing and optimizing an aircraft, it is crucial to accurately analyze
and handle the available aerodynamic data, whether scalar- or vector-valued
quantities. In fact, a correct interpretation of data helps the aerodynamic
engineer to gain insights into complex physical phenomena as well as reliably
judge new technologies. Moreover, aerodynamic data sets represent the common
interface to other disciplines such as flight mechanics, loads analysis or overall
aircraft design. Quantity and quality of these data sets highly depend on the
methodology used to gather them. While flight tests are known to provide data
within a real environment but at a substantial cost, numerical analyses are a
cheaper alternative at a reduced fidelity level. The efficient usage, combination
and handling of such data sets have always been a focus of the aerodynamics
community. However, in the past decade, this trend has significantly intensified
due to increasing computational resources available and the rise in popularity of
machine learning (ML) methods. In fact, big data, ML and deep learning (DL)
are regularly seen as driving factors of the aerospace industry in the upcom-
ing years. Looking at potential benefits and existing demands from several
application fields, the German Aerospace Center (DLR), Institute of Aerody-
namics and Flow Technology decided to intensify research on ML for applied
aerodynamic challenges several years ago. This lecture aims at transferring
knowledge gained throughout the years to interest students and colleagues who
are new to the field. It is split in two parts. First, Bayesian optimization, also
known as surrogate-based optimization (SBO), is introduced and demonstrated
for an airfoil optimization. The same methodology is also employed to handle
uncertainties. Second, an overview of the challenges and differences of ML for
computation fluid dynamics compared to “classical” ML is given.

10.2 Machine Learning for Efficient Design

In commercial aviation, an ongoing need exists to decrease fuel consumption.
This imperative arises from the necessity to fulfill strict environmental objectives
established by governmental bodies. The European Commission delineates these
ecological objectives, stipulating a 75% decrease in CO5 and a 90% decrease
in NO, emissions per passenger kilometer by 2050 (Publications Office of the
European Union, 2011). Given that the tube and wing layout that has already
been highly optimized is dominating the market, and seems to do so also for
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upcoming years, improvements are no longer trivial to obtain. Hence, the
integration of aerodynamic shape optimization with advanced technologies has
become increasingly prevalent. Especially designing for laminar instead of
turbulent flow on large areas of an aircraft offers a significant reduction in
viscous drag and, hence, directly reduces fuel consumption. Note that while
laminarity is not a new concept in general, it remains relatively novel in the
context of commercial aircraft wing design. Throughout the years, direct shape
optimization has been used in designing airfoils and wings to achieve natural
laminar flow (NLF) (Han et al., 2018). For all these ambitions, typically, a
large number of solution evaluations, e.g., CFD simulations, is necessary. This
is the place where ML comes into play by ensuring intelligent data collection
and usage.

10.2.1 Surrogate-based Optimization

Solving a global optimization problem may require a large number of function
(black-box) evaluations depending on the design space and the non-linearity
of the function. This can rapidly turn intractable and infeasible, e.g., when
- (i) the design space is high-dimensional and/or (ii) the function evaluation
is expensive (e.g., a typical CFD simulation). Next, an efficient optimization
technique is discussed that is known as surrogate-based optimization (SBO)
or Bayesian Optimization; see Forrester & Keane (2009) for further details. It
leverages machine learning models to reduce computational cost while preserving
high accuracy. For a general optimization problem, let y € R be the quantity
of interest (Qol), which is usually a performance measure such as the drag
coefficient, depending (mostly non-linearly) on the design variables € R? at
operating conditions A. The goal of optimization is to find an optimal set
of design variables * at constant operating conditions Ay while satisfying k&
constraints on the design variables,

x* = argmin{y(x, Ag)},
‘ (10.1)
gi(x) <0, i=1,2,..k.

The workflow of SBO is displayed in Figure 10.1 and consists of four steps.
The first step contains generating the initial DoE sampling in the design space and
evaluating the objective function (and constraints) at all sampling points. Second,
a surrogate model for the objective function (and constraints) is constructed
and iteratively refined using an active infill criteria to sequentially reach the

337



Not available in preview



Data-Driven Modeling for Enhanced Aerodynamic

network receives both parameters as additional inputs. The training points
are therefore sampled in a four-dimensional domain. Moreover, we introduce a
locally varying artificial viscosity factor that is also determined automatically
during training from the network. For optimal space filling a non-uniform point
distribution is used. Half of the points are distributed uniformly across the entire
physical domain {2 = (—1,1) x (=1, 1) using the Halton sequence (Halton, 1960).
For the other half of the points, the y-coordinate is sampled using a normal
distribution with a variance of ¢ = 0.07 and with a uniform distribution for
the x-coordinate. The resulting predictions for the Mach number field for three
exemplary cases are shown in Figure 10.14. One can see that for the cylindrical
shape (a = 0.1), even at My, = 0.4, close to the critical Mach number, the
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Figure 10.14: Exemplary predictions of parametric PINN for local Mach number
for parametric flow around a cylinder. The first row shows the PINN approx-
imation for three different parameter sets. The second row shows a reference
solution and the third row shows the absolute error.
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results are visually indistinguishable from the reference solution. The plot of
the absolute error reveals that inaccuracies are most prevalent near the cylinder
surface and directly up-/down-stream. For the other two parameter sets with
ellipsoidal shapes, a similar quality of the results can be observed. Furthermore,
slight asymmetries between the upper and lower side can be observed. While this
accuracy is inferior to established numerical solvers, the method might still be
of value in situations where rapid predicts for various parameter combinations,
e.g. optimization or loads analysis, are of interest. Further details including
additional studies also on a supersonic test case can be found in Wassing et al.
(2024)

10.4 Conclusions

Machine Learning has a tremendous potential to enhance and improve currently
established tools as well as workflow within the field of applied aerodynamics.
In fact, strength of machine learning models such as rapid turn-around times
while accounting for highly non-linear phenomena naturally addresses several
shortcomings of traditional methods and approaches. This lecture is split into
two parts. The first part focuses on how machine learning models can be used
for optimization and uncertainty quantification with an applied aerodynamics
example. The second part shed some light on differences between machine
learning tasks and settings within the field of fluid dynamics and outside of it.
Based on this some research directions are highlighted that account for such
differences. Overall machine learning is powerful tool for enhancing aerodynamics
but it is not a golden bullet that magically solves all existing problems. Instead
it should be employed in a knowledgeable way by practitioners. Moreover,
additional research is needed to overcome still existing challenges and advance
the state-of-the-art.
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The use of machine learning algorithms to predict the behaviors of complex
systems is gaining interest in the combustion community. The key to an effective
use of machine-learning tools in multi-physics problems, including combustion, is
to couple them to physical and computer models, to embody in them all the prior
knowledge and physical constraints that can enhance their performances, and to
improve them based on the feedback coming for the validation experiments. In
other words, we need to adapt the scientific method to bring machine learning
into the picture and make the best use of the massive amount of data we
have produced thanks to the advances in numerical computing. The present
talk reviews some of the open opportunities for the application of data-driven,
reduced-order modelling of combustion systems. Examples of feature extraction
in turbulent combustion data, empirical low dimensional manifold identification,
classification, regression and reduced-order modelling are provided.
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11.1 Introduction

The simulation of turbulent combustion is a very challenging task, for a number
of aspects beyond turbulence. Indeed, combustion is intrinsically multi-scale and
multi-physics. It is characterized by a variety of scales inherently coupled, in
space and time, through thermo-chemical and fluid dynamic interactions (Pope,
2013). Typical chemical mechanisms describing the evolution of fuels consist of
hundreds of species involved in thousands of reactions, spanning twelve decades
of temporal scales (Frassoldati et al., 2003). The interaction of these scales with
the fluid dynamic ones defines the nature of the combustion regime as well as
the limiting process in the determination of the overall fuel oxidation rate (Kuo
& Acharya, 2012). When the characteristic chemical scales are much smaller
than the fluid dynamic ones, the combustion problem becomes a mixing one (i.e.,
mixed is burnt (Magnussen, 1981)): combustion and chemistry are decoupled
and the problem is highly simplified. Likewise, for chemical time scales much
larger than the fluid dynamic ones, the system can be described taking into
account chemistry only, neglecting the role of fluid dynamics altogether. The
intensity of the interactions between turbulent mixing and chemistry is measured
using the Damkholer number, defined as the ratio between the characteristic
mixing, 7, and chemical, 7., time scales:

Tm
Da = —. 11.1
o= (11.1)

In terms of Da number, Da >> 1 indicates a mixing-controlled, fast chem-
istry process. On the other hand, Da << 1 denotes a chemistry-controlled, slow
chemistry process. Most practical combustion systems operate at conditions
characterized by a non-negligible overlap between flow and chemical scales. This
is particularly true for novel combustion technologies, where the use of diluted
conditions and the enhanced mixing leads to a Da distribution close to unity.
This grants some control on the combustion process, thanks to the increase of
the characteristic chemical scales compared to the mixing ones. In particular,
the operating conditions (temperature and compositions) can be adjusted in
such a way that the emissions are kept below the required values (Cavaliere &
de Joannon, 2004; J.Winning & J.Wiinning, 1997; Parente et al., 2011). The
condition Da ~ 1 is generally referred to as finite-rate chemistry, to indicate that
combustion is not infinitely fast but of finite speed. Modelling these combustion
regimes is very challenging because both fluid mechanics and chemistry must
be accurately modeled. In particular, chemistry cannot be described using
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simplified global mechanisms, resulting in a significant burden for combustion
simulations. Indeed, the solution of turbulent combustion problems requires the
solution of hundreds of transport equations for (tightly coupled) chemical species
on top of the conservation equations for mass, momentum and energy, and the
corresponding closure models (i.e., turbulence models). Beside the dimension-
ality problem, the transport equations of reacting scalars also require closure
models, when the reacting structures are not fully resolved on the numerical grid.
The challenges associated to turbulent combustion modelling makes the use of
machine learning very attractive. While turbulent combustion models are spread
across combustion industries, their current predictive capabilities fall well short
of what would be needed in decision making for new designs and regulations
(Pope, 2013). High-fidelity, direct numerical simulations (DNS) of combustion
systems are still limited to particular aspect of a turbulent combustion process
and simple ‘building blocks’. Still, these high-fidelity simulations are rich in
information that could help decode the complexity of turbulence-chemistry
interactions and guide the development of filtered and lower-fidelity modelling
approaches for faster evaluations. The objective of the present lecture is to
demonstrate the potential of data-driven modelling in the context of combustion
simulations. In particular, we present:

o The application of Principal Component Analysis (PCA) and other linear
and non-linear techniques to identify low-dimensional manifolds in high-
fidelity combustion data-sets and reveal the key features of complex non-
equilibrium phenomena. Different techniques are compared to PCA,
including Non-negative Matrix Factorization (NMF'), Autoencoders and
Local PCA in Section 11.2.

o The development of reduced-order models (ROMSs), to be used in conjunc-
tion with, or to replace high-fidelity simulation tools, to reduce the burden
associated with the large number of species in detailed chemical mecha-
nisms. First, the use of transport models based on PCA are presented
in Section 11.3. Then, the application of a dynamic adaptive chemistry
approach based on the combination of classification and non-linear regres-
sion is discussed in Section 11.4. Finally, the development of digital twins
of combustion systems is shown in Section 11.5.
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Digital Twins: Challenges and Enablers

designed for diagnostic, predictive, prescriptive, or autonomous purposes, these
digital twins signify a progression toward more human-in-the-loop systems. In
this paradigm, human attention is directed towards critical decision-making,
while automated processes take on repetitive, dull, dirty, and dangerous tasks,
optimizing the utilization of Al technologies.
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